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NUMERICAL CALCULATION OF EQUIVALENT MOMENT 
OF INERTIA FOR A FLUID IN A CYLINDRICAL 

CONTAINER WITH PARTITIONS 
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SUMMARY 
A 3-D numerical code was developed to solve the irrotational flow of an ideal fluid inside a moving cylindrical 
container with partitions. The problem is formulated in terms of two Poisson equations, the velocity equation 
and the pressure equation. These are expressed in terms of finite differences and solved by a procedure of line 
over relaxation. From the fluid pressure we computed the resultant moment on the container which was then 
expressed in terms of the equivalent moment of inertia. The code was checked against analytical results of 
Moiseyev and we found an agreement of 2-5 per cent even for a sparse mesh. We then demonstrated the 
capability of the code by computing the equivalent moment of inertia for various configurations with full and 
partial partitions. 
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INTRODUCTION 

In an analysis of the fluid motion inside a moving container the following simplifying assumptions 
are often made:’ rigid tank, ideal fluid, irrotational (potential) flow field. With these assumptions 
and for the case where the fluid completely fills the container, Zhukovskiy2 proved that it is 
possible to replace the fluid body by an equivalent rigid body. Zhukovskiy also proved the 
following theorem, as stated in Reference 3. ‘The ellipsoid of inertia of the equivalent body is 
always contained in the ellipsoid of inertia of the fluid’. Zhukovskiy also devised analytical 
methods to determine the moment of inertia of the equivalent bodies for containers of various 
geometries, e.g. ellipsoid, cylinder, cylinder with two, four or eight symmetrically spaced radial 
partitions, half a sphere, rectangular parallelepiped, etc. These analytical methods are effective for 
geometries with a certain amount of symmetry, but become intractable for complex geometries. 
For these, recourse to numerical methods is necessary. In this paper a numerical scheme is 
developed to solve the irrotational flow equations in cylindrical co- ordinate^.^ It is applied to  a 
cylindrical container with various arrangements of symmetrical and non-symmetrical partitions, 
and the equivalent moment of inertia for these arrangements is calculated. 

Equations 

THEORY 

Let the absolute velocity field of the fluid be denoted by V. Then Euler’s equations for the fluid 
motion are 

av 1 
- + (V.grad)V = --grad P 
at P 

(1) 
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divV = 0 ( 2 )  
where P is the pressure in the fluid and p is its mass density. 

relative to the container is given by 
Let v b  denote the rigid body velocity field of the container. The velocity field of the fluid U 

u=v-vb (3) 

divU = 0 (4) 

As divV, = 0 we have from equations (2) and (3) that also 

Expressing equation (1) in terms of the relative velocity U yields5 

au 1 
- + (U.grad)U = - -gradP - A, - 2(w X u) 
at P 

where w is the angular velocity of the container, so that 

v b = V + W x R  (6) 
R is the radius vector to a point in the container. 
V, is the translation velocity. 
A, is the acceleration of the container given by 

A,=A,  + Y X  R + w x (W x R) (7) 
where A, is the translation acceleration and y is the angular acceleration of the container. 

Taking the divergence of both sides of equation (5) and using equation (4) we have 

where 
divgradP = S,(U) 

s,(u) = - p div[ (U.grad)U + A, + 2(0 X u)] 
We refer to equation (8) as the pressure equation. To solve for the flow field U we start from an 
initial flow field Uo given by 

uO= - v b  (10) 

(1 1) 

(12) 

(13) 

Generally U, is not compatible with the boundary conditions, so that 

divU, = S, # 0 

U = u, + u, 

divU, = - divU, = - S, 

The velocity field U that is compatible with the boundary conditions is given by 

and from equations (4) and (11) we have 

By comparing equation (12) with equation (1 3) and using equation (10) we see that for 
irrotational flow U, is derivable from a potential field 4: 

U, = grad 4 (14) 

(15) 

Combining with equation (13) we have 

divgrad 4 = - S, 

We refer to equation (15) as the velocity equation. 
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As a result the problem is defined by two Poisson equations, the pressure equation (8) and the 
velocity equation (15) together with boundary conditions at the container walls and at both sides of 
partitions inside the fluid (see Figure 3). 

The boundary condition for the velocity equation is 

where n is the direction normal to the fluid boundary at the container walls or at the partitions. 
The boundary condition for the pressure equation is 

(gradP), = - p[(U.grad)U + A, + 2(w x U)], (17) 
To construct the numerical scheme we first express the governing equations (8) and (15) and the 

boundary conditions (16) and (17) in terms of cylindrical co-ordinates (r ,  8, z )  attached to the 
cylindrical container. For this we use the following notation: 

We thus have 

F = A b + 2 ( w x U )  

T = (U.grad)U 

l a  l a  a 1 
T, = ---(ruru,) + -,(a;) + -(u,u,) + -uru6 r ar r 08 az r 

where 
ur, u,, u, are the component of U 
m,,o,,m, are the component of w 
aor, a,,, a,= are the component of A, 

and the pressure equation is 

The pressure boundary conditions are 

8P 
--I= -p(T,  + F,) an . .  

The velocity equation is 
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NUMERICAL SOLUTION 

To construct the difference equations we embed into the cylindrical cavity a 3-D cylindrical 
network as shown in Figure 1. The cells of the network are formed by radial planes, horizontal 
planes and cylindrical surfaces. The container walls coincide with net cell boundaries. Whenever 
there are rigid partitions inside the fluid they also coincide with cell boundaries. 

In some cases a rigid axial rod of diameter d in the centre of the container has been considered. In 
these cases the outer surface of the rod coincides with the boundaries of the innermost cells. 

Referring to Figure 1 we denote the cells by (iJ, k) corresponding to the (r ,  8, z )  directions. The 
numbers of cells in each direction are 

i =  1, ... ,m j =  I,... , n  k = l , . . . , l  (26) 
The pressure P and the potential function q5 are defined at cell centres. Referring once more to 

Figure 1 we denote the inner, front and lower faces of the ( i7 j ,  k) cell by (iJ, k), respectively. The 

H 

Figure 1. Container and mesh geometry 
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components of the velocity vector (ar, u,, u,) are defined at the (i, j ,  k )  cell faces so that we have a 
staggered 3-D network. 

The size of each cell is (Ar, A$, Az), where 

D - d  
Ar=- * with an axial rod 

2m ’ 

. no axial rod 
D 

Ar=- 
2 m +  1’ 

A0 = 2n/n 
AZ = HI1 

The right hand sides of equations (8) and (15) are divergences of vectors. Their finite difference 
approximations are given by 

where f is U, for S ,  and T + F for S,. 

define 
For writing down the finite difference approximations of the components of T and F we first 

The finite difference approximations are: 

where the half integer indices have the meaning as in 

ur(i,j + +, k)  = 4[ur(i,j + 1, k )  + ur(i,j, k ) ]  
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i a  1 1  
r ar r(i + f) Ar 

Ter =: --(YU,U~) 1: [r(i  + l)ur(i + l,j - f, k)u,(i + +,j, k) 

- r(i)ur(i,j - 3, k ) ~ , ( i  - 4,j, k)] 

where the components of w as well as the components of Ao,Vo, y are computed from their 
Cartesian components by 
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1 1  +----- [P(i,j - 1, k) - 2P(i,j, k) + P(i,j + 1, k)] 
r2(i  + 9) A02 

1 
Az 

+ ?[P(i,j, k - 1) - 2P(i, j ,  k) + P(i, j ,  k + l)] = Sp(i, j ,  k) (39) 

(40) 
1 + QE4( i 9 J '9 k - 1) - 24(i,j, k) + qb(i,j, k + l)] = - Su(i,j, k) 

As described before we have along the container axis, in the case without an axial rod, cylindrical 
cells with diameter Ar. 

At the centre r = 0 and the differential equations as well as the difference equations become 
singular. To avoid this problem we represent the velocity vector (as well as other vectors) by its 
Cartesian components ax, uy, a,. 

To devise the difference equations for the cylindrical cell we make use of the Gauss theorem for 
the divergence of a vector, namely: 

jvo, divfd(vo1) = f-dS (41) I 
where S is the outer surface vector of the cylindrical cell. 

The finite difference approximation of equation (41) is 

where 
1 

S, = -xArAz 

S, = +xAr2 
p1 

(43) 

The finite difference approximations of the pressure equation and velocity equation are similarly 
given by 

n 

j =  1 
c EP(1,j, k) - P,(k)lS,/n + CP,(k - 1)  - 2P,(k) + P,(k + l)lS, = S,(k) (44) 

(45) 
j =  1 

where the index c refers to the value at the centre of a cylindrical cell. 
The difference equations representing the pressure equation and the velocity equation together 

with boundary conditions (which are given by the derivative normal to the boundaries) constitute 
systems of N linear equations where N is the number of cells. To solve the linear systems we first 
tried the Gauss-Seidel elimination procedure with over-relaxation. We obtained a very slow 
convergence especially for configurations with partitions. To speed up convergence we used line 
relaxation along lines parallel to the z-axis. 
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For the velocity equation (40), we define 

r(i + 1) 1 
r(i + 3) Ar2 

r(i) 1 
r(i + 4) Ar2 

1 1  

c, =-- 

C 

C, = _ _ _ _ ~  
r2(i + 5) AQ2 

b -  

and retaining only the terms with the indices i,j on the left hand side we get: 

- C d ( b ( i , j , k -  l )+C, (b ( i , j , k ) -C , (b ( i , j , k+  1 ) =  -S , , ( i , j , k )  
f c,(b(i f l,j, k )  f cb(b(i - l,j, k )  + c,[(b(i,j f 1, k )  f (b(i,j - 1, k)] (47) 

Equation (47) is a tri-diagonal linear system of equations which can be solved by a very efficient and 
well-known algorithm. The boundary conditions a 4 p n  = 0 are expressed by 

(bin = +out (48) 
where #in is the value of (b in a cell next to the boundary (on the inside), and (bout is the value of q5 in a 
virtual cell outside the boundary. Equation (47) is altered at the boundaries as a result of 
equation (48). This is done by omitting one of the terms on the right hand side of equation (47) and 
correcting the coefficient C, accordingly. 

Near the cylindrical wall we have, for instance 

- cd(b ( i , j ,  k - 1) f cfl(b(i,j, k )  - cd(b(i , j ,  k -k 1) = - S,,(i,j, k) 
fcd#(i- 1 , j , k ) +  c,[(b(kjf l $ k ) + ( b ( i , j -  1 ,k ) l  
c,, = c, - c, 

(49) 

and similarly modified equations for the other boundaries. 
The pressure equation is given by 

- cdP(i, j ,  k - 1) - c,P(i, j ,  k) f CdP(i, j ,  k f 1) = sp(i,j, k )  

- c,P(1' f 1,j, k) - C$(i - l , j ,  k) - CC[P(1',j - 1, k) f P(i,j f 1, k)] (50) 
For a line of cells parallel to the z-axis this also is a tri-diagonal system of linear equations. The 
boundary conditions are given by 

d P  
In - a n  

Pout = P. + -.An 

where the sign is plus or minus according to whether the outer normal to the boundary is in the 
positive or negative direction of the appropriate co-ordinate axis, and where 

An-Ar,riW or Az (52) 
Whenever the cell (i, j , k )  is near a boundary, equation (50) is modified as a result of equation (51). 

Depending on the type of boundary one of the terms on the right hand side is replaced by 
- + aP/an.An and C, is modified accordingly. For a cell near the container cylindrical wall, for 
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instance, the modified equation is 

33 

l3P 
ar 

-C,-(m+ l ,j ,k)Ar-CbP(i--  l , j ,k) -Cc[P( i , j+  l , k ) + P ( i , j -  l ,k)]  (53) 

Cf, = Cf + c, 
The line relaxation procedure is carried out by scanning lines of cells parallel to the z direction 

(including the line of cylindrical cells in the centre). For each line we assume that the values of the 
unknowns in neighbouring lines are known and we solve the tri-diagonal system. We also employ 
an over-relaxation coefficient a to speed convergence. By trials an optimal value of 1.8 for a was 
found. 

As the boundary conditions in both Poisson equations are given by the normal derivative, 
adding a constant to the solution gives another proper solution. As a result the relaxation 
procedure tends to be unstable so that the mean value of the function grows monotonically. To 
avoid this one has to anchor the solution somehow. For the velocity equation we did this by setting 
4 = 0 at one of the cells. For the pressure equation we anchor the solution in a way that ensures a 
positive pressure in all the cells. This was done by subtracting, after each scan, the lowest value of P 
in the net from the values of P in all the cells. 

RESULTANT FORCE AND MOMENT 

From the solution described in the previous section we obtain the velocity field U(i,j,k) and the 
pressure field P(i, j ,  k). But of practical importance are the values of the resultant force Q and the 
resultant moment M (with respect to the origin, for example) that the fluid exerts on the container 
walls. From the resultant moment one can then deduce the equivalent moment of inertia. 

To compute Q and M from the pressure field, the pressure from the mid cells near the boundary 
is first extrapolated to the boundaries by 

where the sign depends on whether the outer normal to the boundary is in the direction of the axis 
(r,S or z )  at that point, and An is Ar, rAS or Az. 

For a boundary where n is in the radial direction the components of Q are given by 

A0 
(Q,Jr = 2arcs in - - -Az~~P , ( j , k )cos8 ( j+ f )  

2 j k  

I AS 
(QJr  = 2 arcsin - Az C C Pb(j, k )  sin S ( j  + 3) 

( Q A  = 0 

2 i k  

(55)  

where a is the radius of that boundary and the summations are over all the cells near that boundary. 
For a boundary in the 8 direction the components are 

1 (Qx)@ = - ArAz 1 P h ( i ,  k) cos $( j )  
i k  

(Q,)@ = ArAz 11 Pb(i, k )  sin 6 ( j )  
i k  
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where the summations are over the cells near that boundary. 
For a boundary in the z direction the components are 

(QxL = (QJz = 0 
(QJ, = S,P,(k) + C C r(i + #'b(i,j) 

i j  
(57) 

where the first term in equation (57) is the contribution from the cylindrical cells, and the 
summation is over all the cells near that boundary. 

Whenever the direction of n is in opposite sense to that of the relevant axis (r ,  6 or z) a minus sign 
has to be put in the corresponding equations for Qx, Q, and Q,. The components of Q are finally 
given by: 

(58)  

(59) 

I Qx = C C Q X L  + C(Q& 
Q y  = CCQJr  + C(Q,h 
Q, = CCQ,), 

where the summations are over all the boundaries (container boundaries, inner rod and partitions). 
The resultant moment exerted by fluid on the container is given by 

M = 1C, P,dS x R, 
where the summation is over all of the boundary cells, where dS is the vector of boundary cell face 
at the boundary, and where R, is the boundary radius vector. 

In Cartesian co-ordinates the vector product is 

s 
Using this, the components of M are: 

Rb = tx(Spzb - szyb)  + l , (szxb - sxzb) + lz(sxYb - syxb) (60) 

A6 
(MJr = 2 arcsin - Az C C Pb( j ,  k )  sin t l ( j  + &(k + +) 

2 j k  

A% 
2 i j  

( M ~ ) ~  = - 2 arcsin -dz C C Pb(j, k )  cos 6 ( j  + +)z(k + +) 

(MA = 0 

( M X ) @  = ArAzC C Pb(i, k)cos 6 ( j ) A z ( k  + $) 
i j  

(My)@ = ArAz 1 Pb(i ,  k )  sin 6 ( j ) A z ( k  + 4) 
i k  

I (MJZ = 0 
where the summations and notations are equivalent to those in the equations for the components 
of Q. 
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Finally we have 

RESULTS AND DISCUSSION 

Before computing the equivalent moment of inertia of various container configurations a series of 
runs to check the accuracy of the code was carried out. Even for a sparse mesh (m = 3, n = 8,1= 20 
for HID = 4) the accuracy of the pressure field was better than 5 per cent, as compared with the 
analytical solution. Consequently, and in order to save computer time, a sparse mesh was used in 
all subsequent computations. 

To further check the code we made computations for a container without partitions and without 
an axial rod rotating around the x-axis. The container motion was o = (0, 0,O) and y = (1,0,0). We 
made these runs for containers with different aspect ratios HID. For all the runs the integral results 
were: Q = (0, 0,0), M = (M,, 0,O). The equivalent moment of inertia (Z& can then be obtained by 

(Id, = M x l Y x  = M X P  (65) 

The analytical solution for &), as given in Reference 3 is 

D2 
4 

where a = 012,  h = H / 2 ,  m, = prc---H is the fluid mass, and 5, are the roots of the equation 

where J, is the ordinary Bessel function of the first order. 

inertia I,, given by 
To compare the numerical and analytical results (Z& is divided by the rigid body moment of 

Table I. Relative equivalent moment of 
inertia, for a cylindrical container without 
partitions. Comparison between analyt- 

ical and numerical solutions 

( I E I J I X  
HID analytical numerical 

1 0.1639 0.1 744 
1.5 0.3562 03608 
2 0.5382 0.5392 
3 0.7476 0.7462 
4 0.8542 0.8429 
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The results are compared in Table I and Figure 2. We see that the agreement is better than 2 per 
cent. A much better agreement can undoubtedly be obtained with a denser mesh. 

The next configuration we computed was a cylindrical container with different number of 
symmetrically spaced longitudinal partitions, rotating around the z-axis. For such configurations 

X - 
\ 
x n 

w - 
v 

0.5 - 

0 ,  1 I I 1 I I 1 
0 1 2 4 5 6 7 

Figure 2. The relative equivalent moment ofinertia for a full cylindrical container as a function of the aspect ratio. Full line: 
analytical solution: Points: numerical solution 

1 2 3 4 5 

Figure 3. Cross-sections of the five configurations of cylindrical containers with partitions 

Table 11. Cylindrical container with symmetri- 
cally spaced longitudinal partitions. Compa- 
rison between numerical and analytical 

solutions 

Number of U E M Z  
partitions numerical analytical 

0 0 0 
1 05596 - 
2 0.6538 0.622 

07460 __ 3 
4 08084 0790 
5 0.8561 - 
8 09287 0.908 1 
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results for (Z.Jz/Iz based on an analytical solution, for 2,4 and 8 partitions are given in Reference 3. 
Our computations were for configurations having from 1 to 8 partitions. The different 
configurations are shown in Figure 3. 

The results for (Z&/Iz are given in Table I1 and Figure 4. We see that for the cases where there is 
an analytical result the difference from our numerical results is within 5 per cent. The difference 

0.8 

0.2 

1 1 1 1 1  

0 2 4 6 8 10 

NO OF PARTITIONS 
Figure 4. Relative equivalent moment of inertia around the z-axis for cylindrical containers with different numbers of 

partitions. Crosses: analytical solution. Points: numerical solution 

x _. 

2 
n 

W - 
v 

1.0 

0.8 

0.6 

0.4 

0.2 

0 1 2 3 4 5 6 

HID 
Figure 5. Relative equivalent moment of inertia for cylinders with different number of partitions as a function of aspect 

ratio HID: (a) no partitions; (b) three partitions; (c) two or four partitions 
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Table 111. Relative equivalent moment of inertia for a cylindrical con- 
tainer with longitudinal radial partitions rotating around the x- and y -  

axes 

Container Number of 
rotation partitions H I D  ( I E ) J I X  ( J E ) y l J y  

3 1 
1.5 
2 
3 
1 

1.5 
2 
3 
1 

1.5 
2 
3 
1 

1.5 
2 
3 

0.5784 
07113 
0.8014 
0.8934 

___ 

- 

0.6809 
0.7850 
0,8546 
0.9230 

__ 
__ 
__ 
__ 

0.5874 
0.7113 
0.8014 
0.8938 

__ 
- 

- 
- 

0.1822 
0.3620 
0.5389 
0.7449 
0.6809 
0.7850 
0.8546 
0.9230 

X 

X 
X M 

1 2 3 4 5 6 

NO OF PARTITIONS 
Figure 6. Relative equivalent moment of inertia around the x-axis and around the y-axis, for cylindrical containers with an 

aspect ratio of H I D  = 2 for different number of partitions. Points: x-axis. Crosses: y-axis 
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may be due to the fact that in the computation an axial rod of very small diameter was introduced 
in order to avoid the subdivision of the central cylindrical cell. 

For the container configuration with longitudinal partitions we also performed computations 
where the rotation of the container was around the x- and y-axis, i s .  y = (1,0,0) and y= (0,1,0). 
The results are given in Table 111, and in Figure 5. We see from Figure 5 that the results for three 
partitions lie on a different curve than those for 2 and 4 partitions. 

Also, as expected, the equivalent moment of inertia for a container with partitions is higher than 
that for a container without partitions. In Table IV and in Figure 6 we give the results of the 
relative moments of inertia for a cylindrical container with an aspect ratio of HID = 2 and with 1 to 
5 longitudinal radial partitions around the x- and y-axes. 

We see from Figure 6 that for 1 and 2 partitions (IE)x # (I& whereas for 3,4 and 5 partitions 
(IE)x = (I&. This is readily understandable from the tensor properties of the moment of inertia. For 
3 or more partitions there are 2 or more axes of symmetry in the xy plane. The inertia tensor is 
therefore isotropic in the xy plane. This is not the case for the configurations with 1 and 2 partitions. 

2 
A 

T: m 

i I i r m 

m 

w w g  
111 IV 

i 

E 

V 
Figure 7. Geometry of partitions in the five cases with partial partitions. All dimensions are in cm 
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Table IV. Relative moment of inertia around the x- and y-axes 
for cylindrical container with HID = 2 and 1 to 5 longitudinal 

radial partitions 

Container Number of 
rotation partitions (ZE)X/I* ( 1 E ) y l Z y  

06096 
0.8545 
08014 
0.8546 
0.8841 

0.5389 
0.5389 
0.8014 
0.8546 
0,8841 

TableV. Relative moment of inertia around x- and y-axes for a 
cylindrical container of aspect ratio H/D=2 with 1 to 5 partial 

longitudinal symmetrical partitions 

Case Number of partitions ( I E ) J Z X  U E M Z  

I 

I1 

I11 

1 0553 0.333 
2 0574 0.471 
3 0.567 0.567 
4 0.574 0.63 1 
5 0.580 0.683 

1 0.540 0.166 
2 0,541 0.265 
3 0540 0.334 
4 054 1 0.380 
5 0.541 0418 

1 0562 0.268 
2 0589 0477 
3 0.577 0.629 
4 0.589 0.727 
5 0.598 0.794 

IV 1 0544 0.196 
2 0.550 0.357 
3 0.553 0.484 
4 0.550 0.568 
5 0.553 0635 

Next we computed the equivalent moment of inertia for configurations with partial longitudinal 
partitions as shown in Figure 7. As seen in the Figure there were five cases of partial partitions. The 
number of partitions (symmetrically spaced) ranged from 1 to 5 and the aspect ratio of the 
container was HID = 2. The results for the relative moment of inertia around the x- and y-axes for 
the first 4 cases are given in Table V, and plotted in Figures 8 and 9, respectively. 

From Figure 8 we see that, as expected, (IE)= for cases with partial partitions is less than that for 
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full partitions. What is interesting is the results for (ZJX. We see from Figure 9 that for all 4 cases of 
partial partitions (IJx is very close to what one gets for the case of no partitions. The fluid motion 
seems to be quite flexible in such a way that when the partitions are not full even by a small amount, 
the fluid behaves (in terms of the resultant moment it exerts on the container) as if they were not 
there at all. 

0.8 

0.6 
N 

-7, 
nN - 0.4 

w _. 

0.2 

0 1 2 3 4 5 6 

NO OF PARTITIONS 
Figure 8. Relative equivalent moment of inertia around the z-axis, for cylindrical containers of aspect ratio HID = 2, for 
different numbers of partial partitions. Open circles: full partitions. Ellipses: case 1. Full triangles: case 11. Full circles: case 

111. Open triangles: Case IV 

0.8 

0.6 

0.4 F 
F 0.2 

1 I I I I I I 
0 1 2 3 4 5 6 

NO OF PARTITIONS 
Figure 9. Relative equivalent moment of inertia around the x-axis for cylindrical containers of aspect ratio H / D  = 2, for 
different numbers of partial partitions. Full circles: full partitions. Open circles: case I. Open triangles: case 11. Full triangles: 

Case 111 
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Table VI. Cartesian components of the resultant moments for the cylindrical container 
defined in Figure 7, case V, rotating with a unit angular acceleration in x,y or z direction 

Container Number of 
rotation partitions M,[dyn cm] M,,[dyn cm] M,[dyn cm] 

1.135 x lo6 7849 x 104 
1.463 x 10‘ 
1.392 x lo6 
1.463 x 106 
1.503 x lo6 

1.063 x 10‘ 
1.063 x 106 
1.039 x lo6 
1.463 x lo6 
1.505 x 10‘ 

7.852 x lo4 1.258 x lo5 
1,779 x lo5 
2.139 x lo5 
2.367 x lo5 
2.556 x lo5 

Case V differs from the first four cases in that the partitions are not symmetrical with respect to 
the xy plane. In Table VI we give the results for the moment components M,, M y  and M ,  obtained 
for rotations around the three axes. 

We see from Table VI that for the case with a single partition the x- and y-axes are not the major 
axes of the inertia tensor, and we get M ,  # 0 for y = (1,0,0) and M ,  # 0 for y = (0, 0,l). This means 
that for the case of a single partition we have a non-zero inertia product (Z&, = ( I& = - 7-85 x 
lo4 g cm’. 

We used our code to compute the equivalent inertia tensor for many other container 
configurations with full, and partial, partitions in all three cylindrical co-ordinate directions. We 
assume that the results of the examples presented in this paper suffice to demonstrate the capability 
of the code presented. 
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